

Journal of Organometallic Chemistry 487 (1995) 17-21

Journal ofOrgano metallic Chemistry

Reaktionen mit primären Stannylphosphinen: Synthese offenkettiger und ring-oligomerer Zinn-Phosphorverbindungen

Dieter Hänssgen *, Armin Dörr, Heribert Hens, Roland Jeske

Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagkstraße 1, 53121 Bonn, Deutschland

Eingegangen den 7. Februar 1994; in revidierter Form den 26. Juni 1994

Abstract

Metathetical reactions of P-lithio salts of sterically crowded primary stannylphosphines ${}^{t}Bu_{3}SnPH_{2}$ and ${}^{t}Bu_{2}Sn(PH_{2})_{2}$ with organochlorosilanes and -stannanes were investigated. Reactions of ${}^{t}Bu_{3}SnPHLi$ (I) with dichlorides $R_{2}ECl_{2}$ or $(R_{2}SnCl)_{2}PH$ yield the secondary stannylphosphines $({}^{t}Bu_{3}SnPH)_{2}ER_{2}$ (III: E = Si, R = Me; IV: E = Sn, $R = {}^{t}Bu$) and $({}^{t}Bu_{3}SnPHSn{}^{t}Bu_{2})_{2}PH$ (V), respectively. In the corresponding reaction of I with Me₂SnCl₂, the cyclic tertiary stannylphosphine (Me₂SnPSn{}^{t}Bu_{3})_{2} (VI) is formed by condensation of ${}^{t}Bu_{3}SnPH_{2}$. Cyclocondensations yielding tertiary stannylphosphines also occur in the salt reactions of chlorostannanes or -silanes with the dilithio compound ${}^{t}Bu_{2}Sn(PHLi)_{2}$ (II). With Me₃SnCl, the P,P'-bis(stannyl)-subst. diphosphadistannetane (${}^{t}Bu_{2}SnPSnMe_{3}$)₂ (VII) is obtained. Me₃SiCl reacts to give the homologous P,P'-bis(silyl) derivative (${}^{t}Bu_{2}SnPSiMe_{3}$)₂ (VIII). Some properties of these new compounds are reported.

Zusammenfassung

Die Salzreaktionen von P-Lithiosalzen sterisch belasteter primärer Stannylphosphine ¹Bu₃SnPH₂ und ¹Bu₂Sn(PH₂)₂ mit Organochlorsilanen und -stannanen wurden untersucht. Umsetzungen von ¹Bu₃SnPHLi (I) mit Dichloriden R₂ECl₂ oder (R₂SnCl)₂PH ergeben sekundäre Stannylphosphine (¹Bu₃SnPH)₂ER₂ (III: E = Si, R = Me; IV: E = Sn, R = ¹Bu) bzw. (¹Bu₃SnPHSn¹Bu₂)₂PH (V). Die entsprechende Reaktion von I mit Me₂SnCl₂ führt unter ¹Bu₃SnPH₂-Kondensation zum cyclischen tertiären Stannylphosphin (Me₂SnPSn¹Bu₃)₂ (VI). Cyclokondensationen zu tertiären Stannylphosphinen erfolgen auch bei den Salzreaktionen von Chlorstannanen und -silanen mit der Dilithio-Verbindung ¹Bu₂Sn(PHLi)₂ (II). Mit Me₃SnCl entsteht das P,P'-bis(stannyl)-subst. Diphosphadistannetan (¹Bu₂SnPSnMe₃)₂ (VII). Me₃SiCl reagiert zum homologen P,P'-Bis(silyl)-Derivat (¹Bu₂SnPSiMe₃)₂ (VIII). Einige Eigenschaften der neuen Verbindungen werden mitgeteilt.

Keywords: Tin; Phosphorus; Oligomeric compounds; Synthesis Stannylphosphines, primary; Diphosphadistannetanes

1. Einleitung

Im Rahmen von Untersuchungen über Struktur und Reaktionsverhalten sterisch belasteter Zinn-Pnicogenverbindungen haben wir kürzlich über die Synthese der ersten, thermisch stabilen primären Stannylphosphine 'Bu₃SnPH₂ und 'Bu₂Sn(PH₂)₂ berichtet [1]. Beide Verbindungen sind aufgrund ihrer reaktiven P-H und Sn-P-Funktionen [2] nützliche Bausteine zur Herstellung offenkettiger und cyclischer Zinn-Phosphorverbindungen [3,4]. Neuere Anwendungsbeispiele sind die Synthese des ersten P-stannyl-subst. Diphosphens nach Gl. (1) [5] sowie die Kondensation von ${}^{t}Bu_{2}Sn(PH_{2})_{2}$ zu den PH-funktionellen Ringoligomeren (${}^{t}Bu_{2}SnPH_{2}$ und (${}^{t}Bu_{2}SnPH_{3}$ nach Gl. (2) [6]. In Fortsetzung dieser Untersuchungen berichten wir nun über die Reaktionen der Lithiumsalze ${}^{t}Bu_{3}SnPHLi$ (I) und ${}^{t}Bu_{2}Sn(PHLi)_{2}$ (II) mit einer Reihe von Chlorsilanen, Chlorstannanen und Chlorstannylphosphinen.

2. Ergebnisse und Diskussion

Umsetzungen des Lithiumsalzes ¹Bu₃SnPHLi (I) mit Dimethyldichlorsilan im Stoffmengenverhältnis 2:1 führen nach Gl. (3) zum sek. Diphosphinosilan III, das aufgrund ausreichender sterischer Abschirmung auch

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05091-1

$$R_{2}Sn \xrightarrow{PH_{2}}_{PH_{2}} \xrightarrow{50^{\circ}C}_{-PH_{3}} 1/2 R_{2}Sn \xrightarrow{H}_{P}_{SnR_{2}} \xrightarrow{80^{\circ}C} 1/3 \xrightarrow{R_{2}Sn}_{HP}_{SnR_{2}} \xrightarrow{R_{2}}_{HP} (2)$$

$$(R = {}^{t}Bu, R' = 2, 4, 6 {}^{t}Bu, C, H_{2})$$

$$(2)$$

bei erhöhter Temperatur nicht unter Phosphinabspaltung kondensiert. Bei den Reaktionen von I mit Diorganodichlorstannanen werden in Abhängigkeit vom Raumbedarf der Organylreste Zinn-Phosphorverbindungen unterschiedlicher Konstitution erhalten. Mit ^tBu₂SnCl₂ bildet sich das zu III homologe sekundäre Diphosphinostannan IV (Gl. (4)), mit dem Bis(chlorstannyl)phosphin (^tBu₂SnCl)₂PH entsteht das PH-funktionalisierte Triphosphinostannan V (Gl. (5)).

Abweichend hiervon erhält man bei der Umsetzung von I mit (sterisch anspruchslosem) Me_2SnCl_2 kein zu IV homologes offenkettiges Diphosphinostannan, sondern nach Gl. (6) unter ^tBu₃SnPH₂-Kondensation und Cyclisierung das Diphosphadistannetan VI. Die Reaktionen von I mit Me_2SiCl_2 (Gl. (3)) und ^tBu₂SnCl₂ (Gl. (4)) verlaufen über einen Zweistufenprozeß, wobei als Zwischenprodukte das isolierbare Chlorsilylphosphin ^tBu₃SnPH(SiClMe₂) [6] bzw. das Chlorstannylphosphin ^tBu₃SnPH(SnCl^tBu₂) [5] nach Gl. (9) gebildet werden.

Ebenso wie I setzt sich das Dilithium-Salz ^tBu₂Sn(PHLi)₂ (II) mit Organylchlorsilanen oder Chlorstannanen in Abhängigkeit vom Raumbedarf der Organylreste zu unterschiedlichen Reaktionsprodukten um. Mit ^tBu₃SnCl bildet sich nach Gl. (7) das Diphosphinostannan IV. Die Umsetzung von Me₃SnCl mit II verläuft nach nach Gl. (8) über einen Zweistufenprozeß, bei dem als kurzlebiges Zwischenprodukt das zu IV homologe Diphosphinostannan NMR-spektroskopisch nachweisbar ist. Nachfolgende Kondensation führt unter Abspaltung von Me₃SnPH₂ zum Diphosphadistannetan VII. Entsprechend erhält man aus der Umsetzung von Me₃SiCl mit II das zu VII homologe Silylderivat VIII, dessen Identität durch vergleichende MS- und NMR-Spektroskopie mit einer auf anderem Wege hergestellten authentischen Substanzprobe [6] gesichert wurde.

Zusammensetzung und Konstitution der neuen Verbindungen sind durch Elementaranalyse, Massenspektren und die Ergebnisse der NMR-Spektroskopie (¹H, ³¹P, ¹¹⁹Sn) belegt. Im EI-Massenspektrum treten als Peaks der höchsten Massenzahlen die den monomeren Formeleinheiten entsprechenden Ionen M⁺ (III, VII) bzw. M⁺-^tBu (IV, V, VI) auf. In den NMR-Spektren stehen chemische Verschiebungen, Multiplizitäten und rel. Intensität der integrierten Signale (¹H) im Einklang mit den angegebenen Formeln (siehe Tabelle 1). Die von Verbindungen III, IV und V aufgrund zweier chiraler P-Atome zu erwartenden Diastereomeren sind NMR-spektrokopisch nicht nachweisbar. Ursache hierfür dürfte die Inversion an den betreffenen P-Atomen sein, die bei λ^3 -P-Verbindun-

$$(VII): E = Sn, (VIII): E = Si$$

Tabelle 1 ¹H-, ³¹P- und ¹¹⁹Sn-NMR-Daten der Verbindungen III bis VII ($R = {}^{t}Bu$) ^a

	······································	δ ³¹ Ρ	² <i>J</i> _{PP}	δ ¹¹⁹ Sn	¹ J ³¹ P ¹¹⁹ Sn	${}^{3}J^{31}P^{119}Sn$	${}^{2}J^{119}$ Sn 119 Sn	J^{31} P ¹ H	$^{2}J^{119}$ Sn ¹ H
(III)	R ₃ Sn-PH I SiMe ₂	- 255.9	n.b.	25.8	896	-	_	191	31.0
	R ₃ Sn–PH								
(IV)	$R_3Sn^A - PH$ Sn^BR_2	- 298.8	7.8	41.1 (Sn ^A) 119.6 (Sn ^B)	1024 1113	4.0	533	169 (¹ J _{PH}) 0.5 (³ J _{PH})	37.3 (Sn ^A H) 31.6 (Sn ^B H)
	R ₃ Sn ^A PH								
(V)	$R_3Sn^{A}-P^{a}H-Sn^{B}R_2$	- 298.7 (P ^a) - 272.5 (P ^b)	7.9 (P ^a P ^b)	41.2 (Sn ^A)	1022.1 (P ^a Sn ^A) 1107.3 (P ^a Sn ^B)	2.9 (P ^a Sn ^B) 4.0 (P ^b Sn ^A)	501 (Sn ^A Sn ^B)	169 $({}^{1}J_{P^{a}H})$ 0.9 $({}^{3}J_{P^{b}H})$	31.8, 37.2
	$R_3Sn^A - P^aH - Sn^BR_2$		$3.2 ({}^{4}J_{P^{a}P^{b}})$	117.1 (Sn ^B)	1074.1 (P ^b Sn ^B)		489 (Sn ^B Sn ^B)	$\begin{array}{c} 166 \ ({}^{1}J_{P^{b}H}) \\ 0.8 \ ({}^{3}J_{P^{a}H}) \end{array}$	37.3
(VI)	trans-[Me ₂ Sn ^A -	-223.6	n.b.	84.3 (Sn ^A)	84.3 (Sn ^A) 789	12.0 (Sn ^B P)	688 (Sn ^A Sn ^A)	-	-
	$PSn^{B}R_{3}]_{2}$			31.1 (Sn ^B)	1209		418 (Sn ^A Sn ^B)		
(VII)	trans-[R ₂ Sn ^A -	264.8	48.4	108.1 (Sn ^A)	876		234 (Sn ^A Sn ^A)	_	-
	$PSn^{B}Me_{3}]_{2}$			16.3 (Sn ^B)	1065	12.6 (Sn ^B P)	415 (Sn ^A Sn ^B))		

^a Weitere ¹H-NMR-Daten siehe experimenteller Teil.

gen in sterisch anspruchsvoller Koordinationssphäre schon bei vergleichsweise niedriger Temperatur stattfindet [7]. ³¹P- und ¹¹⁹Sn-Spektren von Ringverbindungen VI und VII zeigen die für einen Vierring mit je zwei äquivalenten Phosphor- und Zinn-Atomen zu fordernden Signale. Entsprechende Signalmuster werden auch bei anderen Disphosphadistannetanen mit sperrigem P-Substituenten, z.B. ^tBu oder Me₃Si, gefunden [1,6]. Abweichend hiervon treten diese Signale im ³¹P- und ¹¹⁹Sn-Spektrum des PH-funktionellen Diphosphadistannetans (^tBu₂SnPH)₂ jeweils doppelt auf. Der Befund erklärt sich hier aus dem Vorliegen zweier Diastereomere mit *cis*-bzw. *trans*-ständigen P– H-Atomen, von denen das *trans*-Isomer energetisch geringfügig begünstigt ist ($\Delta G_{298} = 0.3$ kJ mol⁻¹) [6,8]. Ein Anwachsen der Energieunterschiede ist im Falle sterisch anspruchsvoller P-Substituenten zu erwarten, da sich deren (destabilisierende) Wechselwirkung in *cis*-Konfiguration verstärkt auswirkt. Die angeführten Überlegungen und Befunde legen nahe, die ³¹P- und ¹¹⁹Sn-NMR-Signale von VI und VII der *trans*-Form zuzuordnen, eine Konfiguration, wie sie entsprechend auch im Kristall des P-^tBu-subst. Derivats (^tBu₂SnP^tBu)₂ gefunden wurde [1]. Über die Ergebnisse weiterer NMR-spektroskopischer Befunde (¹H, ³¹P, ²⁹Si, ¹¹⁹Sn), die auch die spektroskopischen Daten anderer, sterisch belasteter offenkettiger und cyclischer Zinn-Phosphor- und Zinn-Stickstoffverbindungen mit einschließen, informieren wir ausführlich an anderer Stelle [8].

$$\stackrel{H}{^{t}Bu_{3}SnPLi} + \stackrel{t}{^{t}Bu_{2}SnCl_{2}} \xrightarrow{-LiCl} \stackrel{^{t}Bu_{3}Sn}{\xrightarrow{-P}} \stackrel{H}{\xrightarrow{}} Sn^{t}Bu_{2}$$

$$\downarrow Cl$$

$$(9)$$

^H^IBu₃SnNLi + ^IBu₂SnCl₂

$$\xrightarrow{-\text{LiCl}}$$
 1/3 (^IBu₂SnNH)₃ + ^IBu₃SnCl (10)
^IBu₂Sn $\left\langle \begin{array}{c} NRLi \\ NRLi \end{array} \right|$ + $\left\langle \begin{array}{c} Cl \\ Cl \end{array} \right\rangle E \xrightarrow{-2 \text{LiCl}} {}^{I}Bu_{2}Sn \left\langle \begin{array}{c} N \\ N \\ R \\ R \\ R \\ \end{array} \right\rangle$
(11)

 $E = SiMe_2$, SnR_2 oder Sn

Verbindungen III bis VII bilden luftempfindliche Kristalle, die nach Umkristallisieren aus Ether oder Toluol analysenrein erhalten und im Dunklen unter Inertgas bei -26° C unzersetzt gelagert werden können. An Licht zersetzen sie sich im Verlaufe mehrerer Wochen unter Braunfärbung.

Verglichen mit ihren Stickstoffanaloga, z.B. den Stannylaminen ^tBu₃SnNH₂ [9] und ^tBu₂Sn(NHR)₂ [10], zeigen PH-funktionalisierte Stannylphosphine bei Salzreaktionen und Metallierungen mit Lithiumalkylen bemerkenswert unterschiedliche Verhaltensweisen. So liefert die Umsetzung von ^tBu₂SnCl₂ mit dem zu I homologen lithiierten primären Stannylamin ^tBu₃Sn-NHLi kein Chlorstannylamin ^tBu₃SnNH(SnCl^tBu₂), sondern nach Gl. (10) das Cyclotristannazan (^tBu₂Sn-NH)₃ neben ¹Bu₃SnCl [11]. Unterschiede im chemischen Verhalten zeigen sich auch bei Metallierungsexperimenten mit sek. Stannyldiaminen und Stannyldiphosphinen. Während Stannyldiamine ^tBu₂- $Sn(NHR)_2$ (R = ^tBu oder SiMe₃) mit Lithiumalkylen quantitativ in die korrespondierenden N,N'-Dilithio-Derivative überführt und z.B. mit Dihalogenverbindungen gemäß Gl. (11) weiter umgesetzt werden können [10], gelingt dies mit den Phosphoranaloga III und IV nicht: Silvlverbindung III reagiert mit Lithiumorganylen unter Si-P-Bindungsspaltung, das Stannylderivat IV verhält sich inert. Eine Alternative bietet hier das Dilithio-Salz ¹Bu₂Sn(PHLi)₂ (II), dessen Reaktionen mit geminalen Dihalogeniden zur Zeit untersucht werden.

3. Experimenteller Teil

3.1. Analytisches

Mikroelementaranalysen: Mikroanalytisches Laboratorium E. Pascher, Oberwinter/Rhein. NMR: Varian EM 390, CFT 20, FT 80 A; Bruker WH 90, AX 300; Lösungsmittel C₆D₆ (5–25%ige Lösung), chem. Verschiebungen δ in ppm gegen ext. Me₄Si (¹H), H₃PO₄ (³¹P), bzw. Me₄Sn (¹¹⁹Sn) als Standard. Massenspektren (Elektronenstoß-Ionisation): Kratos MS 30 und VG 12-250. Fragmente der höchsten Massenzahl bezogen auf das Nuklid ¹²⁰Sn, falls nicht anders vermerkt.

3.2. Ausgangsmaterialien

^tBuLi (1.6 M in *n*-Pentan), MeLi, (1.6 M in Ether), Me₃SiCl, Me₂SiCl₂, Me₃SnCl und Me₂SnCl₂ waren Handelsware; ^tBu₃SnCl [12], ^tBu₂SnCl₂ [13], ^tBu₃SnPH₂ [1], ^tBu₂Sn(PH₂)₂ [6] und (^tBu₂SnCl)₂PH [14] wurden in Anlehnung an die Literatur hergestellt.

3.3. Bis(tri-t-butylstannylphosphino)dimethylsilan (III)

1.61 g (5.0 mmol) ${}^{t}Bu_{3}SnPH_{2}$ werden in 10 ml Diethylether gelöst und bei $-78^{\circ}C$ mit 3.1 ml (5.0 mmol) einer 1.6 M Lösung von Methyllithium versetzt. Nach 4 h Rühren bei 20°C kühlt man die Reaktionslösung auf $-78^{\circ}C$ und tropft 0.66 g (5.0 mmol) Me_{2}SiCl₂, gelöst in Diethylether, hinzu. Nach 4 h Rühren bei 20°C kühlt man erneut auf $-78^{\circ}C$ und versetzt mit einer Lösung von 5.0 mmol 'Bu_{3}SnPHLi in Diethylether (Herstellung s.o.). Nach 4 h Rühren bei 20°C und Abtrennen vom LiCl wird die Lösung auf die Hälfte des ursprünglichen Volumens eingeengt. Beim Abkühlen auf $-26^{\circ}C$ kristallisiert **III** aus und wird aus Diethylether umkristallisiert.

Ausb.: 1.96 g (56.2% d.Th.); farblose Kristalle, Fp. 47°C.

¹H-NMR: 1.48 (s, 54H, Sn^tBu₃); ³J(¹HCC^{117/119}Sn) 62/66 Hz; 0.89 (s, 6H, SiMe₂). MS: m/e = 704(M⁺, 0.2%); hochaufgelöstes Massenspektrum: Gef.: 639.1403 (M⁺-^tBu, 0.31%), ber.: 639,1434 (bezogen auf das Nuklid ¹¹⁶Sn).

3.4. Di-t-butyl-bis(tri-t-butylstannylphosphino)stannan (IV)

1.61 g (5.0 mmol) ${}^{1}Bu_{3}SnPH_{2}$ werden in 10 ml Diethylether gelöst und bei $-78^{\circ}C$ mit 3,1 ml (5.0 mmol) einer 1.6 M Lösung von Methyllithium versetzt. Nach 4 h Rühren bei 20°C kühlt man die Reaktionslösung auf $-78^{\circ}C$ und tropft 1.52 g (5.0 mmol) ${}^{1}Bu_{2}SnCl_{2}$, gelöst in Diethylether, hinzu. Nach 4 h Rühren bei 20°C kühlt man erneut auf $-78^{\circ}C$ und versetzt mit einer Lösung von 5.0 mmol ${}^{1}Bu_{3}SnPHLi$ in Diethylether (Herstellung s.o.). Nach 4 h Rühren bei 20°C und Abtrennen vom LiCl wird die Lösung auf die Hälfte des ursprünglichen Volumens eingeengt. Beim Abkühlen auf $-26^{\circ}C$ kristallisiert **IV** aus und wird aus Toluol umkristallisiert. Ausb: 2.80 g (64% d.Th.); blaßgelbe Kristalle, Fp. 169°C.

¹H-NMR: 1.48 (s, 54H, Sn^tBu₃), ³J(¹HCC^{117/119}Sn) 61/64 Hz; 1.45 (s, 18H, Sn^tBu₂), ³J(¹HCC^{117/119}Sn) 73/76 Hz. MS: m/e = 823 (M⁺-^tBu, 20%). Gef.: C, 43.30; H, 8.36. C₄₀H₉₃P₃Sn₄ (876.0) ber.: C, 43.84; H, 8.45%.

3.5. Bis[(di-t-butyl-tri-t-butylstannylphosphino)stannyl]phosphin (V)

1.61 g (5.0 mmol) ^tBu₃SnPH₂ werden in 10 ml Diethylether gelöst und bei -78° C mit 3,1 ml (5.0 mmol) einer 1.6 M Lösung von Methyllithium versetzt. Nach 4 h Rühren bei 20°C kühlt man die Reaktionslösung auf -78° C und tropft 1.42 g (2.5 mmol) (^tBu₂SnCl)₂PH, gelöst in Diethylether, hinzu. Nach 4 h Rühren bei 20°C und Abtrennen vom LiCl wird die Lösung auf die Hälfte des ursprünglichen Volumens eingeengt. Beim Abkühlen auf -26° C kristallisiert V aus und wird durch Umkristallisieren aus Diethylether gereinigt.

Ausb.: 1.80 g (63.7% d.Th.), blaßgelbe Kristalle, Fp. 175°C.

¹H-NMR: 1.52 (s, 54H, Sn^tBu₃), ³ $J(^{1}HCC^{117/119}Sn)$ 60/64 Hz; 1.62 (s, 36H, Sn^tBu₂), ³ $J(^{1}HCC^{117/119}Sn)$ 72/76 Hz. MS: $m/e = 1089 (M^{+}-{}^{t}Bu, 0.3\%)$. Gef.: C, 41.22; H, 8.15. C₄₀H₉₃P₃Sn₄ (1141.2) ber.: C, 42.03; H, 8.21%.

3.6. 1,3-Bis(tri-t-butylstannyl)-2,2,4,4-tetramethyl-1,3, 2,4-diphosphadistannetan (VI)

1.61 g (5.0 mmol) ^tBu₃SnPH₂ werden in 15 ml Diethylether gelöst und bei -78° C mit 6.25 ml (10 mmol) einer 1.6 M Lösung von Methyllithium in Diethylether versetzt. Nach 4 h Rühren bei 20°C tropft man die Reaktionslösung zu einer auf -78° C gekühlten Lösung von 1.10 g (5.0 mmol) Me₂SnCl₂ in Diethylether. Nach 4 h Rühren bei 20°C und Abtrennen vom LiCl engt man ein und fällt **IV** durch Abkühlen der Reaktionslösung auf -26° C aus.

Ausb.: 1.03 g (43.7% d.Th.), farblose Kristalle, Fp. 157°C.

¹H-NMR: 1.40 (s, 54H, Sn^tBu₃), ³J(¹HCC^{117/119}Sn) 60/64 Hz; 0.92 (s, 12H, SnMe₂), ²J(¹HC^{117/119}Sn) 68/72 Hz. MS: m/e = 887 (M^{+–t}Bu, 60%). Gef.: C, 35,84; H, 7.17. C₂₈H₆₆P₂Sn₄ (939.7) ber.: C, 35.79; H, 7.08%.

3.7. 2,2,4,4-Tetra-t-butyl-2,4-bis(trimethylstannyl)1,3,2,4diphosphadistannetan (VII)

1.50 g (5.0 mmol) ^tBu₂Sn(PH₂)₂ werden in 5 ml Diethylether von -78° C gelöst, tropfenweise mit 6.25 ml (10.0 mmol) einer 1.6 M Lösung von ^tBuLi in *n*-Pentan versetzt und anschließend 4 h bei 20°C gerührt. Zur Reaktionslösung tropft man darauf bei -78° C 2.00 g (10.0 mmol) Me₃SnCl in 5 ml Diethylether und rührt 4 h bei 20°C. Nach Abtrennen vom LiCl fällt **VII** beim Abkühlen auf -26° C aus.

Ausb.: 2.17 g (51.0% d.Th.), farblose Kristalle, Fp. 132° C.

¹H-NMR: 1.43 (s, 36H, Sn^tBu₂), ³ $J(^{1}HCC^{117/119}Sn)$ 80/84 Hz; 0.45 (s, 18H, SnMe₃), ² $J(^{1}HC^{117/119}Sn)$ 66/70 Hz. MS: m/e = 860 (M⁺, 0.6%). Gef.: C, 31,04; H, 6.44. C₂₂H₅₄P₂Sn₄ (854,8) ber.: C, 30.89; H, 6.36%.

Dank

Wir danken dem Fonds der Chemischen Industrie für Sachbeihilfen. Der Fa. Hoechst AG, Werk Knapsack, Hürth, danken wir für Chemikalienspenden.

Literatur

- D. Hänssgen, H. Aldenhoven und M. Nieger, J. Organomet. Chem., 367 (1989) 47; D. Hänssgen und H. Aldenhoven, Chem. Ber., 123 (1990) 1833.
- [2] A.D. Norman, J. Organomet. Chem., 28 (1971) 81.
- [3] H. Schumann und H. Benda, Chem. Ber., 104 (1971) 333.
- [4] H. Schumann und H. Benda, Angew. Chem., 80 (1968) 846; H.
 Schumann und H. Benda, Angew. Chem., 81 (1969) 1049.
- [5] D. Hänssgen, H. Aldenhoven und M. Nieger, J. Organomet. Chem., 375 (1989) C9-C12.
- [6] D. Hänssgen, H. Aldenhoven und M. Nieger, Chem. Ber., 123 (1990) 1837; A. Dörr, Dissertation, Universität Bonn, 1992.
- [7] A. Rauk, L.C. Allen und K. Mislow, Angew. Chem., 82 (1970) 453.
- [8] A. Dörr, D. Gudat, D. Hänssgen, H. Hens und E. Stahlhut. Bull. Soc. Chim., 131 (1994) 674.
- [9] H.J. Götze, Angew. Chem., 86 (1974) 104.
- [10] D. Hänssgen, J. Kuna und B. Ross, J. Organomet. Chem., 92 (1975) C49; D. Hänssgen, J. Kuna und B. Ross, Chem. Ber., 109 (1976) 1797; D. Hänssgen, H. Puff und N. Beckermann, J. Organomet. Chem., 293 (1985) 191.
- [11] H. Hens, Diplomarbeit, Universität Bonn, 1992.
- [12] D. Hänssgen, P. Reuter und G. Döllein, J. Organomet. Chem., 317 (1986) 159.
- [13] S.A. Kandil und A.L. Allred, J. Chem. Soc. A, (1970) 2987.
- [14] D. Hänssgen, E. Stahlhut, H. Aldenhoven und A. Dörr, J. Organomet. Chem., 425 (1992) 19.